Skip to content

Home / icechunk-python / xarray

Icechunk + Xarray

Icechunk was designed to work seamlessly with Xarray. Xarray users can read and write data to Icechunk using xarray.open_zarr and xarray.Dataset.to_zarr.

Warning

Using Xarray and Icechunk together currently requires installing Xarray >= 2024.11.0.

pip install "xarray>=2024.11.0"

In this example, we'll explain how to create a new Icechunk repo, write some sample data to it, and append data a second block of data using Icechunk's version control features.

Create a new repo

Similar to the example in quickstart, we'll create an Icechunk repo in S3 or a local file system. You will need to replace the StorageConfig with a bucket or file path that you have access to.

import xarray as xr
from icechunk import Repository, StorageConfig
storage_config = StorageConfig.s3_from_env(
    bucket="icechunk-test",
    prefix="xarray-demo"
)
repo = Repository.create(storage_config)
storage_config = StorageConfig.filesystem("./icechunk-xarray")
repo = Repository.create(storage_config)

Open tutorial dataset from Xarray

For this demo, we'll open Xarray's RASM tutorial dataset and split it into two blocks. We'll write the two blocks to Icechunk in separate transactions later in the this example.

Note

Downloading xarray tutorial data requires pooch and netCDF4. These can be installed with

pip install pooch netCDF4
ds = xr.tutorial.open_dataset('rasm')

ds1 = ds.isel(time=slice(None, 18))  # part 1
ds2 = ds.isel(time=slice(18, None))  # part 2

Write Xarray data to Icechunk

Create a new writable session on the main branch to get the IcechunkStore:

session = repo.writable_session("main")
store = session.store()

Writing Xarray data to Icechunk is as easy as calling Dataset.to_zarr:

ds1.to_zarr(store, zarr_format=3, consolidated=False)

Note

  1. Consolidated metadata is unnecessary (and unsupported) in Icechunk. Icechunk already organizes the dataset metadata in a way that makes it very fast to fetch from storage.
  2. zarr_format=3 is required until the default Zarr format changes in Xarray.

After writing, we commit the changes using the session:

session.commit("add RASM data to store")
# output: 'ME4VKFPA5QAY0B2YSG8G'

Append to an existing store

Next, we want to add a second block of data to our store. Above, we created ds2 for just this reason. Again, we'll use Dataset.to_zarr, this time with append_dim='time'.

# we have to get a new session after committing
session = repo.writable_session("main")
ds2.to_zarr(session.store(), append_dim='time')

And then we'll commit the changes:

session.commit("append more data")
# output: 'WW4V8V34QCZ2NXTD5DXG'

Reading data with Xarray

To read data stored in Icechunk with Xarray, we'll use xarray.open_zarr:

xr.open_zarr(store, consolidated=False)
# output: <xarray.Dataset> Size: 17MB
# Dimensions:  (time: 36, y: 205, x: 275)
# Coordinates:
#   * time     (time) object 288B 1980-09-16 12:00:00 ... 1983-08-17 00:00:00
#     xc       (y, x) float64 451kB dask.array<chunksize=(103, 275), meta=np.ndarray>
#     yc       (y, x) float64 451kB dask.array<chunksize=(103, 275), meta=np.ndarray>
# Dimensions without coordinates: y, x
# Data variables:
#     Tair     (time, y, x) float64 16MB dask.array<chunksize=(5, 103, 138), meta=np.ndarray>
# Attributes:
#     NCO:                       netCDF Operators version 4.7.9 (Homepage = htt...
#     comment:                   Output from the Variable Infiltration Capacity...
#     convention:                CF-1.4
#     history:                   Fri Aug  7 17:57:38 2020: ncatted -a bounds,,d...
#     institution:               U.W.
#     nco_openmp_thread_number:  1
#     output_frequency:          daily
#     output_mode:               averaged
#     references:                Based on the initial model of Liang et al., 19...
#     source:                    RACM R1002RBRxaaa01a
#     title:                     /workspace/jhamman/processed/R1002RBRxaaa01a/l...

We can also read data from previous snapshots by checking out prior versions:

store = repo.readable_session(snapshot_id='ME4VKFPA5QAY0B2YSG8G').store()

xr.open_zarr(store, consolidated=False)
# <xarray.Dataset> Size: 9MB
# Dimensions:  (time: 18, y: 205, x: 275)
# Coordinates:
#     xc       (y, x) float64 451kB dask.array<chunksize=(103, 275), meta=np.ndarray>
#     yc       (y, x) float64 451kB dask.array<chunksize=(103, 275), meta=np.ndarray>
#   * time     (time) object 144B 1980-09-16 12:00:00 ... 1982-02-15 12:00:00
# Dimensions without coordinates: y, x
# Data variables:
#     Tair     (time, y, x) float64 8MB dask.array<chunksize=(5, 103, 138), meta=np.ndarray>
# Attributes:
#     NCO:                       netCDF Operators version 4.7.9 (Homepage = htt...
#     comment:                   Output from the Variable Infiltration Capacity...
#     convention:                CF-1.4
#     history:                   Fri Aug  7 17:57:38 2020: ncatted -a bounds,,d...
#     institution:               U.W.
#     nco_openmp_thread_number:  1
#     output_frequency:          daily
#     output_mode:               averaged
#     references:                Based on the initial model of Liang et al., 19...
#     source:                    RACM R1002RBRxaaa01a
#     title:                     /workspace/jhamman/processed/R1002RBRxaaa01a/l...

Notice that this second xarray.Dataset has a time dimension of length 18 whereas the first has a time dimension of length 36.

Next steps

For more details on how to use Xarray's Zarr integration, checkout Xarray's documentation.